Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Value in Health ; 26(6 Supplement):S77, 2023.
Article in English | EMBASE | ID: covidwho-20238662

ABSTRACT

Objectives: The COVID19 pandemic caused over six million deaths worldwide as of 2022 and made necessary the rapid development of vaccines. The objective of this Systematic Literature Review is to summarise the main evidence from economic evaluations of vaccines against COVID19. Method(s): Searches were conducted on PubMed on July 13th 2022. The selected papers considered COVID19 vaccination scenarios without population limits. The types of study design examined were cost-benefit and cost-effectiveness analyses. Result(s): Overall, 16 articles from an initial list of 1842 were included in this review. Out of the 16 models, there were five Markov cohort models (three of them were combined with a decision tree model), four dynamic transmission models, three microsimulation models, three epidemiological models (without further information on the model structure) and one decision tree model. Model characteristics were considerably consistent between high-, middle- or low-income countries. Five studies considered both the healthcare and societal perspective, while seven studies reported only the former, and one only the latter. Two studied did not specify the study perspective. Ten of the studies did not consider any level of herd immunity, and no study considered cross-protection. Although eight studies used "naive" comparisons between vaccines, none of the studies conducted thorough indirect treatment comparison. All the models suggest that vaccines are cost-effective as they prevent death and transmission, and reduce the severity of cases. Although the sources of effectiveness estimates were always stated, the details of those studies were rarely reported. Nevertheless, the outcome measures and the key parameters used in the models were generally clearly stated and justified. Conclusion(s): This SLR highlights several challenges for conducting Health Economic evaluations of COVID19 vaccines. The quality of the models and their estimates suffered from the very fast pace of COVID19 research. Therefore, economic evidence on vaccination programs requires additional rigorous research.Copyright © 2023

2.
Animals ; 13(11):1766, 2023.
Article in English | ProQuest Central | ID: covidwho-20235886

ABSTRACT

Simple SummaryDuring the long-term co-evolution of the virus and the host, even closely related vaccines may emerge with incomplete protective immunity due to the mutations or deletions of amino acids at specific antigenic sites. The mutation of PEDV was accelerated by the recombination of different strains and the mutation of the strains adapting to the environment. These mutations either cause immune escape from conventional vaccines or affect the virulence of the virus. Therefore, researching and developing new vaccines with cross-protection through continuous monitoring, isolation and sequencing are important to determine whether their genetic characteristics are changed and to evaluate the protective efficacy of current vaccines. The porcine epidemic diarrhea virus (PEDV) can cause severe piglet diarrhea or death in some herds. Genetic recombination and mutation facilitate the continuous evolution of the virus (PEDV), posing a great challenge for the prevention and control of porcine epidemic diarrhea (PED). Disease materials of piglets with PEDV vaccination failure in some areas of Shanxi, Henan and Hebei provinces of China were collected and examined to understand the prevalence and evolutionary characteristics of PEDV in these areas. Forty-seven suspicious disease materials from different litters on different farms were tested by multiplex PCR and screened by hematoxylin-eosin staining and immunohistochemistry. PEDV showed a positivity rate of 42.6%, infecting the small and large intestine and mesenteric lymph node tissues. The isolated strains infected Vero, PK-15 and Marc-145 multihost cells and exhibited low viral titers in all three cell types, as indicated by their growth kinetic curves. Possible putative recombination events in the isolates were identified by RDP4.0 software. Sequencing and phylogenetic analysis showed that compared with the classical vaccine strain, PEDV SX6 contains new insertion and mutations in the S region and belongs to genotype GIIa. Meanwhile, ORF3 has the complete amino acid sequence with aa80 mutated wild strains, compared to vaccine strains CV777, AJ1102, AJ1102-R and LW/L. These results will contribute to the development of new PEDV vaccines based on prevalent wild strains for the prevention and control of PED in China.

3.
Topics in Antiviral Medicine ; 31(2):139-140, 2023.
Article in English | EMBASE | ID: covidwho-2312133

ABSTRACT

Background: Despite favorable vaccine responses of people with HIV (PWH), susceptibility to SARS-CoV-2 (SCv2) infection and increased risk of COVID-19 in immunocompromised PWH continue to be of concern. Here, we searched the Swiss HIV Cohort Study (SHCS) with>9500 actively enrolled, optimally treated PWH to identify factors associated with SCv2 infection in the pre-and postvaccination area. Method(s): We utilized information on SCv2 events reported to the SHCS in 2020 -2021. To detect asymptomatic infection, we screened pre-pandemic (2019) and pandemic (2020-2021) bio-banked plasma for SCv2 antibodies (Ab). SCv2+ and matched SCv2- PWH were additionally screened for Abs to circulating human coronaviruses (HCoV). Data were compared to HIV negative (HIV-) controls. SCv2 data and >26 behavioral, immunologic and disease-parameters available in the SHCS data base were analyzed by logistic regression, conditional logistic regression, and Bayesian multivariate regression. Result(s): Considering information on the SCv2 status of 6270 SHCS participants, neither HIV-1 viral load nor CD4+ T cell levels were linked with increased SCv2 infection risk. COVID-19-linked hospitalization (87/982) and case fatality rates (8/982) were low, but slightly higher than in the general Swiss population when stratified by age. Compared to HIV-, PWH had lower SCv2 IgG responses (median effect size= -0.48, 95%-Credibility-Interval=[-0.7, -0.28]). Consistent with earlier findings, high HCoV Abs pre-pandemic (2019) were associated with a lower risk of a subsequent SCv2-infection and, in case or infection, with higher Ab responses. Examining behavioral factors unrelated to the HIV-status, people living in single-person households were less at risk of SCv2 infection (aOR= 0.77 [0.66,0.9]). We found a striking, highly significant protective effect of smoking on SCv2 infection risk (aOR= 0.46 [0.38,0.56], p=2.6*10-14) which was strongest in 2020 prior to vaccination and was even comparable to the effect of early vaccination in 2021. This impact of smoking was highly robust, occurred even in previous smokers and was highest for heavy smokers. Conclusion(s): Our unbiased cohort screen identified two controversially discussed factors, smoking and cross-protection by HCoV responses to be linked with reduced susceptibility to SCv2, validating their effect for the general population. Overall weaker SCv2 Ab responses in PWH are of concern and need to be monitored to ensure infection- and vaccine-mediated protection from severe disease.

4.
Front Immunol ; 14: 1148877, 2023.
Article in English | MEDLINE | ID: covidwho-2317568

ABSTRACT

Introduction: We investigated whether prior SARS-CoV-2-specific IFN-γ and antibody responses in Ugandan COVID-19 pre-pandemic specimens aligned to this population's low disease severity. Methods: We used nucleoprotein (N), spike (S), NTD, RBD, envelope, membrane, SD1/2-directed IFN-γ ELISpots, and an S- and N-IgG antibody ELISA to screen for SARS-CoV-2-specific cross-reactivity. Results: HCoV-OC43-, HCoV-229E-, and SARS-CoV-2-specific IFN-γ occurred in 23, 15, and 17 of 104 specimens, respectively. Cross-reactive IgG was more common against the nucleoprotein (7/110, 15.5%; p = 0.0016, Fishers' Exact) than the spike (3/110, 2.72%). Specimens lacking anti-HuCoV antibodies had higher rates of pre-epidemic SARS-CoV-2-specific IFN-γ cross-reactivity (p-value = 0.00001, Fishers' exact test), suggesting that exposure to additional factors not examined here might play a role. SARS-CoV-2-specific cross-reactive antibodies were significantly less common in HIV-positive specimens (p=0.017; Fishers' Exact test). Correlations between SARS-CoV-2- and HuCoV-specific IFN-γ responses were consistently weak in both HIV negative and positive specimens. Discussion: These findings support the existence of pre-epidemic SARS-CoV-2-specific cellular and humoral cross-reactivity in this population. The data do not establish that these virus-specific IFN-γ and antibody responses are entirely specific to SARS-CoV-2. Inability of the antibodies to neutralise SARS-CoV-2 implies that prior exposure did not result in immunity. Correlations between SARS-CoV-2 and HuCoV-specific responses were consistently weak, suggesting that additional variables likely contributed to the pre-epidemic cross-reactivity patterns. The data suggests that surveillance efforts based on the nucleoprotein might overestimate the exposure to SARS-CoV-2 compared to inclusion of additional targets, like the spike protein. This study, while limited in scope, suggests that HIV-positive people are less likely than HIV-negative people to produce protective antibodies against SARS-CoV-2.


Subject(s)
COVID-19 , HIV Seropositivity , Humans , Pandemics , SARS-CoV-2 , Antibody Formation , COVID-19/epidemiology , Uganda/epidemiology , Antibodies, Viral , Enzyme-Linked Immunospot Assay
5.
Pathogens ; 10(5)2021 Apr 26.
Article in English | MEDLINE | ID: covidwho-2269240

ABSTRACT

Infectious bronchitis virus (IBV) is one of the most important poultry pathogens, leading significant economic losses worldwide. IBV is characterised by highly genetic, serotype, and pathotypic variability. Despite extensive immunoprophylaxis strategies, the emergence of new genetic lineages is frequently observed in the field, causing disease control to be more complicated. In the last decade, the spread of variants assigned to the GI-23 lineage of IBV (formerly known as Var2) started from Middle-Eastern countries and reached Europe in the last few years. Recently, the introduction and fast spread of Var2-like IBVs in Poland was reported. In this study, the virulence properties and efficacy of different vaccination programmes were evaluated against infection with the IBV GI-23 strain gammaCoV/Ck/Poland/G052/2016. The pathogenicity of the Var2 isolate was conducted in one-day-old and three-week-old SPF chickens and showed that the course of the disease is age dependent. Seven vaccination programmes using Mass, 793B, QX alone or in combination, and Var2 live vaccines were tested against the GI-23 infectious bronchitis virus challenge. All groups were scored according to the ciliostasis test at 5 days post challenge. Two immunoprophylaxis strategies generated full protection against gammaCoV/Ck/Poland/G052/2016 infection-Var2 and Mass used in one-day-old chickens boosted by a combination of the QX and 793B vaccine (both with a ciliostasis score of 0 and 100% protection).

6.
Proc Natl Acad Sci U S A ; 120(12): e2220320120, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2263575

ABSTRACT

Pre-existing SARS-CoV-2-reactive T cells have been identified in SARS-CoV-2-unexposed individuals, potentially modulating COVID-19 and vaccination outcomes. Here, we provide evidence that functional cross-reactive memory CD4+ T cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is established in early childhood, mirroring early seroconversion with seasonal human coronavirus OC43. Humoral and cellular immune responses against OC43 and SARS-CoV-2 were assessed in SARS-CoV-2-unexposed children (paired samples at age two and six) and adults (age 26 to 83). Pre-existing SARS-CoV-2-reactive CD4+ T cell responses targeting spike, nucleocapsid, and membrane were closely linked to the frequency of OC43-specific memory CD4+ T cells in childhood. The functional quality of the cross-reactive memory CD4+ T cell responses targeting SARS-CoV-2 spike, but not nucleocapsid, paralleled OC43-specific T cell responses. OC43-specific antibodies were prevalent already at age two. However, they did not increase further with age, contrasting with the antibody magnitudes against HKU1 (ß-coronavirus), 229E and NL63 (α-coronaviruses), rhinovirus, Epstein-Barr virus (EBV), and influenza virus, which increased after age two. The quality of the memory CD4+ T cell responses peaked at age six and subsequently declined with age, with diminished expression of interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF), and CD38 in late adulthood. Age-dependent qualitative differences in the pre-existing SARS-CoV-2-reactive T cell responses may reflect the ability of the host to control coronavirus infections and respond to vaccination.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Child, Preschool , Adult , Child , Humans , Middle Aged , Aged , Aged, 80 and over , SARS-CoV-2 , T-Lymphocytes , Herpesvirus 4, Human , CD4-Positive T-Lymphocytes , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Cross Reactions
7.
Cell Rep ; 42(4): 112326, 2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2248035

ABSTRACT

Group 2B ß-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. Here, we evaluate the mechanisms of cross-sarbecovirus protective immunity, currently less clear yet important for pan-sarbecovirus vaccine development, using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination does not prevent virus replication, it protects against lethal heterologous disease outcomes in both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clade 2 bat sarbecovirus challenge models. The spike vaccines tested primarily elicit a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. Rather, non-neutralizing antibody functions, mechanistically linked to FcgR4 and spike S2, mediate cross-protection in wild-type mice. Protection is lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.

8.
Flora ; 27(4):527-534, 2022.
Article in English | EMBASE | ID: covidwho-2238767

ABSTRACT

SARS-CoV-2 has affected essentially all countries worldwide and caused millions of people to become infected and die. Therefore, it is extremely valuable to investigate new approaches to stop the most scarring ongoing pandemic. BCG vaccine has been proposed that it could reduce the rate of new COVID cases and limit the severity of infection since TB and COVID-19 have similar dominant effects, such as cytokine storm and improper immune response. This review aimed to focus on the latest literature data on trained immunity as well as the possible cross protection effect of BCG vaccine against COVID-19. The first immune response to BCG vaccines has started with the stimulation of adaptive immune response and establishment of the immunological memory of antigen-specific T and B cells to target infectious agents. In the past years, innate immune response was thought to be not having the talent to adapt and "learn” from previous exposure to a pathogen. Trained immunity is conceivable as 'de facto' innate immune system memory. Some researches argue that there is a strong relationship between BCG immunization and COVID-19 although some are against this argument. Based on the data obtained from different research studies and ongoing clinical trials, there is still no evidence that BCG vaccine is effective against COVID-19. Besides assumptions, knowns and unknowns, the clinical efficiency of BCG vaccine against SARS-CoV-2 should be validated by accurate scientific clinical reports in different age groups to understand the potential benefits of BCG vaccine to limit COVID-19 incidence and mortality.

9.
Vaccine ; 41(6): 1223-1231, 2023 02 03.
Article in English | MEDLINE | ID: covidwho-2165936

ABSTRACT

After severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) made the world tremble with a global pandemic, SARS-CoV2 vaccines were developed. However, due to the coronavirus's intrinsic nature, new variants emerged, such as Delta and Omicron, refractory to the vaccines derived using the original Wuhan strain. We developed an HERV-enveloped recombinant baculoviral DNA vaccine against SARS-CoV2 (AcHERV-COVID19S). A non-replicating recombinant baculovirus that delivers the SARS-CoV2 spike gene showed a protective effect against the homologous challenge in a K18-hACE2 Tg mice model; however, it offered only a 50 % survival rate against the SARS-CoV2 Delta variant. Therefore, we further developed the AcHERV-COVID19 Delta vaccine (AcHERV-COVID19D). The AcHERV-COVID19D induced higher neutralizing antibodies against the Delta variant than the prototype or Omicron variant. On the other hand, cellular immunity was similarly high for all three SARS-CoV2 viruses. Cross-protection experiments revealed that mice vaccinated with the AcHERV-COVID19D showed 100 % survival upon challenge with Delta and Omicron variants and 71.4 % survival against prototype SARS-CoV2. These results support the potential of the viral vector vaccine, AcHERV-COVID19D, in preventing the spread of coronavirus variants such as Omicron and SARS-CoV2 variants.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Mice , Animals , Humans , COVID-19 Vaccines , SARS-CoV-2 , Mice, Transgenic , Angiotensin-Converting Enzyme 2 , Vaccines, DNA/genetics , RNA, Viral , COVID-19/prevention & control , DNA , Viral Vaccines/genetics , Antibodies, Neutralizing , Baculoviridae/genetics , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
10.
Microbiol Spectr ; : e0263922, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2137472

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is found in regions where dengue (DENV) and chikungunya (CHIKV) viruses are endemic. Any serological cross-reactivity between DENV, CHIKV, and SARS-CoV-2 is significant as it could lead to misdiagnosis, increased severity, or cross-protection. This study examined the potential cross-reactivity of anti-DENV and CHIKV antibodies with SARS-CoV-2 using acute and convalescent-phase samples collected before the SARS-CoV-2 pandemic. These included healthy, normal human (NHS, n = 6), CHIKV-positive (n = 14 pairs acute and convalescent), primary DENV-positive (n = 20 pairs), secondary DENV-positive (n = 20 pairs), and other febrile illnesses sera (n = 23 pairs). Samples were tested using an in-house SARS-CoV-2 and a EUROIMMUN IgA and IgG ELISAs. All NHS samples were negative, whereas 3.6% CHIKV, 21.7% primary DENV, 15.7% secondary DENV, and 10.8% febrile diseases sera resulted as anti-SARS-CoV-2 antibody positive. The EUROIMMUN ELISA using spike 1 as the antigen detected more positives among the primary DENV infections than the in-house ELISA using spike 1-receptor binding domain (RBD) protein. Among ELISA-positive samples, four had detectable neutralizing antibodies against SARS-CoV-2 reporter virus particles yet none had detectable neutralizing antibodies against the live Wuhan strain of SARS-CoV-2. These data demonstrated the SARS-CoV-2 diagnostic cross-reactivity, but not neutralizing antibody cross-reactivity, among dengue seropositive cases. IMPORTANCE SARS-CoV-2 continues to cause significant morbidity globally, including in areas where DENV and CHIKV are endemic. Reports using rapid diagnostic and ELISAs have demonstrated that serological cross-reactivity between DENV and SARS-CoV-2 can occur. Furthermore, it has been observed that convalescent DENV patients are at a lower risk of developing COVID-19. This phenomenon can interfere with the accuracy of serological testing and clinical management of both DENV and COVID-19 patients. In this study, the cross-reactivity of primary/secondary anti-DENV, CHIKV, and other febrile illness antibodies with SARS-CoV-2 using two ELISAs has been shown. Among ELISA-positive samples, four had detectable levels of neutralizing antibodies against SARS-CoV-2 reporter virus particles. However, none had detectable neutralizing antibodies against the live Wuhan strain of SARS-CoV-2. These data demonstrated SARS-CoV-2 diagnostic cross-reactivity, but not neutralizing antibody cross-reactivity, among dengue seropositive cases. The data discussed here provide information regarding diagnosis and may help guide appropriate public health interventions.

11.
Emerg Infect Dis ; 28(11): 2352-2355, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2054901

ABSTRACT

We assessed cross-reactivity to BA.1, BA.2, and BA.5 of neutralizing antibodies elicited by ancestral, Delta, and Omicron BA.1 SARS-CoV-2 infection in mice. Primary infection elicited homologous antibodies with poor cross-reactivity to Omicron strains. This pattern remained after BA.1 challenge, although ancestral- and Delta-infected mice were protected from BA.1 infection.


Subject(s)
COVID-19 , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins , Cross Reactions
12.
Vaccines (Basel) ; 10(7)2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-1939063

ABSTRACT

The COVID-19 pandemic emerged in 2020 and has caused an unprecedented burden to all countries in the world. SARS-CoV-2 continues to circulate and antigenically evolve, enabling multiple reinfections. To address the issue of the virus antigenic variability, T cell-based vaccines are being developed, which are directed to more conserved viral epitopes. We used live attenuated influenza vaccine (LAIV) virus vector to generate recombinant influenza viruses expressing various T-cell epitopes of SARS-CoV-2 from either neuraminidase (NA) or non-structural (NS1) genes, via the P2A self-cleavage site. Intranasal immunization of human leukocyte antigen-A*0201 (HLA-A2.1) transgenic mice with these recombinant viruses did not result in significant SARS-CoV-2-specific T-cell responses, due to the immunodominance of NP366 influenza T-cell epitope. However, side-by-side stimulation of peripheral blood mononuclear cells (PBMCs) of COVID-19 convalescents with recombinant viruses and LAIV vector demonstrated activation of memory T cells in samples stimulated with LAIV/SARS-CoV-2, but not LAIV alone. Hamsters immunized with a selected LAIV/SARS-CoV-2 prototype were protected against challenge with influenza virus and a high dose of SARS-CoV-2 of Wuhan and Delta lineages, which was confirmed by reduced weight loss, milder clinical symptoms and less pronounced histopathological signs of SARS-CoV-2 infection in the lungs, compared to LAIV- and mock-immunized animals. Overall, LAIV is a promising platform for the development of a bivalent vaccine against influenza and SARS-CoV-2.

13.
Microbiol Spectr ; 10(3): e0153822, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1879119

ABSTRACT

Equitable access to vaccines is necessary to limit the global impact of the coronavirus disease 2019 (COVID-19) pandemic and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In previous studies, we described the development of a low-cost vaccine based on a Newcastle Disease virus (NDV) expressing the prefusion-stabilized spike protein from SARS-CoV-2, named NDV-HXP-S. Here, we present the development of next-generation NDV-HXP-S variant vaccines, which express the stabilized spike protein of the Beta, Gamma, and Delta variants of concerns (VOC). Combinations of variant vaccines in bivalent, trivalent, and tetravalent formulations were tested for immunogenicity and protection in mice. We show that the trivalent preparation, composed of the ancestral Wuhan, Beta, and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant. IMPORTANCE This manuscript describes an extended work on the Newcastle disease virus (NDV)-based vaccine focusing on multivalent formulations of NDV vectors expressing different prefusion-stabilized versions of the spike proteins of different SARS-CoV-2 variants of concern (VOC). We demonstrate here that this low-cost NDV platform can be easily adapted to construct vaccines against SARS-CoV-2 variants. Importantly, we show that the trivalent preparation, composed of the ancestral Wuhan, Beta, and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant. We believe that these findings will help to guide efforts for pandemic preparedness against new variants in the future.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Humans , Mice , Newcastle disease virus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
14.
Front Immunol ; 13: 841868, 2022.
Article in English | MEDLINE | ID: covidwho-1785344

ABSTRACT

The Bacillus Calmette-Guérin (BCG) vaccine, which is widely used to protect children against tuberculosis, can also improve immune response against viral infections. This unicentric, randomized-controlled clinical trial assessed the efficacy and safety of revaccination with BCG Moscow in reducing the positivity and symptoms of COVID-19 in health care workers (HCWs) during the COVID-19 pandemic. HCWs who had negative COVID-19 IgM and IgG and who dedicated at least eight hours per week in facilities that attended to individuals suspected of having COVID-19 were included in the study and were followed for 7, 15, 30, 60, and 180 days by telemedicine. The HCWs were randomly allocated to a revaccinated with BCG group, which received the BCG vaccine, or an unvaccinated group. Revaccination with BCG Moscow was found to be safe, and its efficacy ranged from 30.0% (95.0%CI -78.0 to 72.0%) to 31.0% (95.0%CI -74.0 to 74.0%). Mycobacterium bovis BCG Moscow did not induce NK cell activation at 15-20 days post-revaccination. As hypothesized, revaccination with BCG Moscow was associated with a lower incidence of COVID-19 positivity, though the results did not reach statistical significance. Further studies should be carried out to assess whether revaccination with BCG is able to protect HCWs against COVID-19. The protocol of this clinical trial was registered on August 5th, 2020, at REBEC (Registro Brasileiro de Ensaios Clínicos, RBR-4kjqtg - ensaiosclinicos.gov.br/rg/RBR-4kjqtg/1) and the WHO (# U1111-1256-3892). The clinical trial protocol was approved by the Comissão Nacional de ética de pesquisa- CONEP (CAAE 31783720.0.0000.5078).


Subject(s)
COVID-19 , Mycobacterium bovis , BCG Vaccine , COVID-19/prevention & control , Child , Health Personnel , Humans , Immunization, Secondary/methods , Moscow , Pandemics/prevention & control
15.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1765807

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus whose infection in pregnant women is associated with a spectrum of birth defects, which are together referred as Congenital Zika Syndrome. In addition, ZIKV can also induce Guillain-Barré syndrome, which is an autoimmune disease with neurological symptoms. The recent description of the first local infections of ZIKV in the European continent together with the expansion of one of its potential vectors, the Asian tiger mosquito (Aedes albopictus), invite us to be prepared for future outbreaks of ZIKV in this geographical region. However, the antigenic similarities of ZIKV with other flaviviruses can lead to an immune cross-reactivity with other circulating flaviviruses inducing, in some cases, flavivirus-disease exacerbation by antibody-dependent enhancement (ADE) of infection, which is a major concern for ZIKV vaccine development. Until now, West Nile virus (WNV) is the main medically relevant flavivirus circulating in the Mediterranean Basin. Therefore, anticipating the potential scenario of emergency vaccination against ZIKV in areas of Europe where WNV is endemic, in this investigation, we have evaluated the cross-reactivity between WNV and our previously developed ZIKV vaccine candidate based on modified vaccinia virus Ankara (MVA) vector expressing ZIKV structural proteins (MVA-ZIKV). To this end, mice were first immunized with MVA-ZIKV, subsequently challenged with WNV, and then, the ZIKV- and WNV-specific immune responses and protection against WNV were evaluated. Our results indicate low cross-reactivity between the MVA-ZIKV vaccine candidate and WNV and absence of ADE, supporting the safety of this ZIKV vaccine candidate in areas where the circulation of WNV is endemic.

16.
J Virol ; 96(8): e0016922, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1765080

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV-1) and SARS-CoV-2 are highly pathogenic to humans and have caused pandemics in 2003 and 2019, respectively. Genetically diverse SARS-related coronaviruses (SARSr-CoVs) have been detected or isolated from bats, and some of these viruses have been demonstrated to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor and to have the potential to spill over to humans. A pan-sarbecovirus vaccine that provides protection against SARSr-CoV infection is urgently needed. In this study, we evaluated the protective efficacy of an inactivated SARS-CoV-2 vaccine against recombinant SARSr-CoVs carrying two different spike proteins (named rWIV1 and rRsSHC014S, respectively). Although serum neutralizing assays showed limited cross-reactivity between the three viruses, the inactivated SARS-CoV-2 vaccine provided full protection against SARS-CoV-2 and rWIV1 and partial protection against rRsSHC014S infection in human ACE2 transgenic mice. Passive transfer of SARS-CoV-2-vaccinated mouse sera provided low protection for rWIV1 but not for rRsSHC014S infection in human ACE2 mice. A specific cellular immune response induced by WIV1 membrane protein peptides was detected in the vaccinated animals, which may explain the cross-protection of the inactivated vaccine. This study shows the possibility of developing a pan-sarbecovirus vaccine against SARSr-CoVs for future preparedness. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlight the necessity of developing wide-spectrum vaccines against infection of various SARSr-CoVs. In this study, we tested the protective efficacy of the SARS-CoV-2 inactivated vaccine (IAV) against two SARSr-CoVs with different spike proteins in human ACE2 transgenic mice. We demonstrate that the SARS-CoV-2 IAV provides full protection against rWIV1 and partial protection against rRsSHC014S. The T-cell response stimulated by the M protein may account for the cross protection against heterogeneous SARSr-CoVs. Our findings suggest the feasibility of the development of pan-sarbecovirus vaccines, which can be a strategy of preparedness for future outbreaks caused by novel SARSr-CoVs from wildlife.


Subject(s)
COVID-19 Vaccines , Coronavirus Infections , Cross Protection , Spike Glycoprotein, Coronavirus , Vaccines, Inactivated , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chiroptera , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Protection/immunology , Humans , Mice , Mice, Transgenic , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Inactivated/immunology , Viral Zoonoses/prevention & control
17.
Vaccines (Basel) ; 10(1)2021 Dec 21.
Article in English | MEDLINE | ID: covidwho-1580369

ABSTRACT

In this study,we used publicly available data from the Centrum e-Zdrowia (CeZ) Polish Databank proposing a possible correlation between influenza vaccination and mortality due to COVID-19. We limited our search to the patients with positive COVID­19 laboratory tests from 1 January 2020 to 31 March 2021 and who filled a prescription for any influenza vaccine during the 2019-2020 influenza season. In total, we included 116,277 patients and used a generalized linear model to analyze the data.We found out that patients aged 60+ who received an influenza vaccination have a lower probability of death caused by COVID-19 in comparison to unvaccinated, and the magnitude of this difference grows with age. For people below 60 years old, we did not observe an influence of the vaccination. Our results suggest a potential protective effect of the influenza vaccine on COVID-19 mortality of the elderly. Administration of the influenza vaccine before the influenza season would reduce the burden of increased influenza incidence, the risk of influenza and COVID­19 coinfection and render the essential medical resources accessible to cope with another wave of COVID-19. To our knowledge, this is the first study showing a correlation between influenza vaccination and the COVID-19 mortality rate in Poland.

18.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: covidwho-1556254

ABSTRACT

We hypothesized that cross-protection from seasonal epidemics of human coronaviruses (HCoVs) could have affected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, including generating reduced susceptibility in children. To determine what the prepandemic distribution of immunity to HCoVs was, we fitted a mathematical model to 6 y of seasonal coronavirus surveillance data from England and Wales. We estimated a duration of immunity to seasonal HCoVs of 7.8 y (95% CI 6.3 to 8.1) and show that, while cross-protection between HCoV and SARS-CoV-2 may contribute to the age distribution, it is insufficient to explain the age pattern of SARS-CoV-2 infections in the first wave of the pandemic in England and Wales. Projections from our model illustrate how different strengths of cross-protection between circulating coronaviruses could determine the frequency and magnitude of SARS-CoV-2 epidemics over the coming decade, as well as the potential impact of cross-protection on future seasonal coronavirus transmission.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Age Factors , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , Coronavirus , Coronavirus Infections/transmission , Cross Protection , England/epidemiology , Forecasting , Humans , SARS-CoV-2 , Seasons , Wales/epidemiology
19.
Viruses ; 13(12)2021 12 04.
Article in English | MEDLINE | ID: covidwho-1554851

ABSTRACT

The persistent circulation of SARS-CoV-2 represents an ongoing global threat due to the emergence of new viral variants that can sometimes evade the immune system of previously exposed or vaccinated individuals. We conducted a follow-up study of adult individuals that had received an inactivated SARS-CoV-2 vaccine, evaluating antibody production and neutralizing activity over a period of 6 months. In addition, we performed mice immunization with inactivated SARS-CoV-2, and evaluated the immune response and pathological outcomes against Gamma and Zeta variant infection. Vaccinated individuals produced high levels of antibodies with robust neutralizing activity, which was significantly reduced against Gamma and Zeta variants. Production of IgG anti-S antibodies and neutralizing activity robustly reduced after 6 months of vaccination. Immunized mice demonstrated cellular response against Gamma and Zeta variants, and after viral infection, reduced viral loads, IL-6 expression, and histopathological outcome in the lungs. TNF levels were unchanged in immunized or not immunized mice after infection with the Gamma variant. Furthermore, serum neutralization activity rapidly increases after infection with the Gamma and Zeta variants. Our data suggest that immunization with inactivated WT SARS-CoV-2 induces a promptly responsive cross-reactive immunity response against the Gamma and Zeta variants, reducing COVID-19 pathological outcomes.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Inactivated/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cross Protection , Cytokines/metabolism , Follow-Up Studies , Humans , Immunization , Lung/metabolism , Lung/pathology , Mice , Vaccines, Inactivated/administration & dosage , Viral Load
20.
Microorganisms ; 9(11)2021 Nov 10.
Article in English | MEDLINE | ID: covidwho-1534193

ABSTRACT

Group B coxsackieviruses (CVB) containing six serotypes, B1-B6, affect various organs, and multiple serotypes can induce similar diseases such as myocarditis and pancreatitis. Yet, no vaccines are currently available to prevent these infections. Translationally, the derivation of vaccines that offer protection against multiple serotypes is highly desired. In that direction, we recently reported the generation of an attenuated strain of CVB3, termed Mt10, which completely protects against both myocarditis and pancreatitis induced by the homologous wild-type CVB3 strain. Here, we report that the Mt10 vaccine can induce cross-protection against multiple CVB serotypes as demonstrated with CVB4. We note that the Mt10 vaccine could induce cross-reactive neutralizing antibodies (nABs) against both CVB1 and CVB4. In challenge studies with CVB4, the efficacy of the Mt10 vaccine was found to be 92%, as determined by histological evaluation of the heart and pancreas. Antibody responses induced in Mt10/CVB4 challenged animals indicated the persistence of cross-reactive nABs against CVB1, CVB3, and CVB4. Evaluation of antigen-specific immune responses revealed viral protein 1 (VP1)-reactive antibodies, predominantly IgG2a, IgG2b, IgG3, and IgG1. Similarly, by using major histocompatibility complex class II tetramers, we noted induction of VP1-specific CD4 T cells capable of producing multiple T cell cytokines, with interferon-γ being predominant. Finally, none of the vaccine recipients challenged with CVB4 revealed the presence of viral nucleic acid in the heart or pancreas. Taken together, our data suggest that the Mt10 vaccine can prevent infections caused by multiple CVB serotypes, paving the way for the development of monovalent CVB vaccines to prevent heart and pancreatic diseases of enteroviral origin.

SELECTION OF CITATIONS
SEARCH DETAIL